

Journal of Educational Sciences

Journal homepage: https://jes.ejournal.unri.ac.id/index.php/JES

Enhancing Student Learning Outcomes in Science Through Environmental-Based Instructional Videos in Grade V at SD Inpres 5 Taipalaga

Rizal*, Surahman, Rosola, Pahriadi Primary Teacher Education, Tadulako University, Palu, 94119, Indonesia

ARTICLE INFO

Article history:

Received: 10 May 2025 Revised: 10 June 2025 Accepted: 11 June 2025 Published online: 05 July 2025

Keywords:

Student Learning Outcomes, Science, Environmental, Instructional Videos

* Corresponding author:

E-mail: surahmanwilade@gmail.com

Article Doi:

https://doi.org/10.31258/jes.9.4.p.2562-2572

This is an open access article under the <u>CC BY-SA</u> license.

ABSTRACT

This study aimed to improve student learning outcomes in the Science, Environment, and Social Studies subject through the use of instructional videos supported by elements of the surrounding natural environment in Grade V of SD Inpres 5 Taipalaga. The research employed a quantitative approach using classroom action research, conducted in two cycles consisting of four stages: planning, action, observation, and reflection. The sample and population consisted of 16 students. Data were collected through essay-type achievement tests and observational instruments. The results from Cycle I showed that 11 out of 16 students achieved the minimum mastery criteria, resulting in a classical completeness rate of 68.75%. In Cycle II, 12 students met the learning objectives, increasing classical completeness to 75%, an improvement of 6.25% over Cycle I. Student activity observations also improved from 72.91% in Cycle I to 89.58% in Cycle II. Likewise, teacher performance increased from 85.71% to 96.42% across the two cycles. These findings demonstrate that integrating instructional videos with local environmental contexts can enhance student engagement and understanding of science concepts. Therefore, the use of environmentally assisted video learning is an effective strategy to improve learning outcomes in IPAS for elementary school students.

1. Introduction

Education is the cornerstone for developing a nation's human resources. Schools serve as dynamic environments where individuals interact, gain knowledge, and develop skills to reach their highest potential. At the heart of this educational process are teachers, whose role is pivotal in cultivating students' talents, interests, and abilities (Muhtar & Dallyono, 2020). Effective teaching is not solely dependent on the delivery of content but also on the learning atmosphere, which significantly influences students' enthusiasm and learning outcomes.

In today's education system, there is a growing emphasis on enhancing the quality of science-related subjects, particularly Ilmu Pengetahuan Alam dan Sosial (IPAS), an integrated science and social studies subject introduced in Indonesia's elementary curriculum. The government has initiated various programs to support and elevate the quality of IPAS education in elementary schools. These initiatives underscore the importance of pedagogical strategies, media selection, and instructional methods tailored to the characteristics of students and the content being taught (Abolaji et al., 2025). Teachers, therefore, must be innovative in selecting and utilizing appropriate learning media. One such medium that has proven to be effective is instructional video. Instructional videos have the potential to make abstract concepts more concrete by combining visual and auditory elements that engage students and promote deeper understanding (Ariyani et al., 2025). The integration of multimedia in education aligns with the learning preferences of digital-native students and can significantly improve their comprehension and retention of content (Hartati et al., 2023).

In the context of IPAS learning, which often involves complex ecological and environmental concepts, the use of video can bridge the gap between theory and real-world phenomena. When paired with students' immediate surroundings, such as the local natural environment, videos can contextualize abstract ideas and enhance relevance, making learning more meaningful and effective (Abolaji et al., 2025; Misbahudholam et al., 2023). This approach aligns with the culturo-technocontextual model of teaching, which emphasizes the integration of cultural relevance, technology, and context to foster environmental consciousness and conceptual understanding.

Despite these advances, challenges persist in elementary classrooms, particularly in rural or under-resourced areas. At SD Inpres 5 Taipalaga, for instance, IPAS is still perceived as a difficult subject among Grade V students. Preliminary observations and interviews with the classroom teacher revealed that out of 17 students, only 5 achieved a passing grade (75–80) on the topic of ecosystems. The majority scored below the school's Minimum Mastery Criteria (KKTP), indicating a significant gap in comprehension. The teacher noted a general lack of engagement and motivation during IPAS lessons, contributing to these low outcomes.

These findings point to the urgent need for instructional interventions that not only clarify the content but also foster student interest and active participation. One promising solution is the integration of instructional videos that feature local environmental contexts familiar to students. By grounding scientific concepts in their lived experiences and surroundings, students are more likely to understand and apply what they learn (Hernawan et al., 2022). This method also supports the development of ecoliteracy—an essential component of IPAS learning that encourages students to care for and interact responsibly with their environment (Misbahudholam et al., 2023).

Research has shown that video-based instruction can significantly enhance learning outcomes when used appropriately. For example, studies on the use of interactive and animated videos in elementary science education demonstrated improved

student engagement and understanding (Irmayu et al., 2024; Ariyani et al., 2025). These results are consistent with the findings of Hartati et al. (2023), who reported that videos aligned with problem-based learning frameworks fostered critical thinking and deeper learning. Furthermore, integrating culturally and environmentally relevant content within video materials has been found to be particularly effective in enhancing students' connection to the material and improving academic achievement (Parmiti et al., 2021).

Instructional media, particularly videos, also support differentiated instruction by catering to diverse learning styles—visual, auditory, and kinesthetic. The SAVI (Somatic, Auditory, Visual, Intellectual) model, for instance, highlights the importance of engaging multiple senses to optimize learning (Ariyani et al., 2025). Videos that incorporate local environments not only stimulate students' senses but also connect emotionally and cognitively, enabling them to internalize scientific knowledge more effectively. The role of technology in supporting pedagogical goals is further emphasized by the TPACK (Technological Pedagogical Content Knowledge) framework, which encourages the thoughtful integration of content, pedagogy, and technology to enhance learning experiences (Fakhriyah et al., 2022). In this context, instructional videos serve as a medium that synthesizes all three components, offering a platform for interactive, engaging, and contextually meaningful learning. When used purposefully, technology can transform traditional classrooms into dynamic learning environments that promote inquiry, problem-solving, and critical thinking.

Moreover, studies underscore the importance of a stimulating classroom environment in promoting student achievement. Creating an inclusive and supportive space where learners feel valued and motivated can significantly influence their learning trajectory (Fadhluzzakiyy et al., 2025). Video-assisted lessons, particularly when tied to students' cultural and environmental realities, can help establish such environments by validating students' identities and experiences within the curriculum (Abolaji et al., 2025).

In line with these perspectives, this study aims to examine the effectiveness of video-assisted learning, supported by the natural environment surrounding students, in improving learning outcomes in IPAS among Grade V students at SD Inpres 5 Taipalaga. The study employs a classroom action research approach to address the specific issue of low academic performance in the topic of ecosystems. Through this research, we aim to explore how contextualized instructional videos can bridge students' understanding of complex scientific concepts, thereby improving their academic performance and environmental awareness. Ultimately, improving educational outcomes in IPAS is crucial for developing scientifically literate citizens who are capable of making informed decisions about the environment. The ability to understand, analyze, and act upon ecological issues is especially relevant in today's era of environmental crises. Early intervention in the form of effective, engaging, and context-sensitive teaching strategies can lay the foundation for responsible citizenship and lifelong learning (Hafina et al., 2022; Aristanti & Fatayan, 2024).

This study contributes to the growing body of literature that emphasizes the need for innovative, technology-supported, and contextually grounded teaching practices in elementary education. By focusing on the integration of instructional videos and environmental contexts, it offers insights into practical strategies that teachers can adopt to enhance science learning in similar educational settings. The findings are expected to inform not only curriculum development and teacher training but also policy efforts aimed at improving the quality and relevance of science education at the elementary level.

2. Methodology

This research was a Classroom Action Research (CAR) employing a cyclical model developed by Kemmis and McTaggart (in Deliwati, 2016), consisting of four stages in each cycle: planning, acting, observing, and reflecting. The study was conducted at SD Inpres 5 Taipalaga, involving 16 fifth-grade students with diverse learning abilities.

Instrument

The main instruments used in this study were observation sheets, student learning outcome tests, and video learning materials. The videos used were designed contextually to support IPAS learning by integrating the surrounding natural environment. This aligns with the findings of Surahman et al. (2020), who emphasized the effectiveness of environmental-based scientific approaches in improving science learning outcomes.

Data Collection

Data were collected in two cycles. Each cycle followed the sequence of lesson planning based on the learning objectives, delivering lessons using interactive video media, observing student engagement and comprehension, and conducting reflection to evaluate the effectiveness of the intervention. Student performance data were gathered through structured assessments at the end of each cycle. Observational data were supported by field notes and documentation. Following Wulandari et al. (2023), the integration of video in inquiry-based learning helps optimize student participation and scientific understanding.

Data Analysis

Data were analyzed both qualitatively and quantitatively. Descriptive statistics were used to measure improvement in student achievement, while qualitative data were interpreted based on observation patterns and student responses. This approach supports the work of Fitria et al. (2023), who argued for the importance of combining quantitative outcomes with qualitative classroom dynamics. The process also mirrors methods suggested by Sidiq et al. (2021), emphasizing HOTS-based assessments. Finally, Rahman et al. (2025) highlighted the role of creative, contextual learning materials—like local wisdom—based videos—as key in enhancing students' creative dispositions in science learning.

3. Results and Discussion

Results

The results of this study refer to the implementation of learning based on the teaching module that has been created. The material discussed is about ecosystems (food chains and food webs) which are taught using learning videos assisted by the surrounding nature. After the implementation of learning, an evaluation is carried out.

Acquisition Aspects	Results	
Highest score	90 (4 students)	
Lowest score	30 (1 student)	
Average score	67,5	
Number of students	16	
Percentage of classical absorption capacity	67,5 %	
Percentage of classical completion	68,75 %	
Number of students who completed	11 students	
Number of students who did not complete	5 students	

Tabel 1. Results of Cycle I Action Test Analysis

Based on table 1, it can be seen that 4 students got the highest score of 90 and 1 student got the lowest score of 30 with an average score of 67.5. The percentage of classical absorption is 67.5% and the percentage of classical completion is 68.75% with the number of students who have completed as many as 11 people and 5 people have not completed.

Acquisition Aspects Results Highest score 100 (1 student) Lowest score 35 (1 student) Average score 72,18 Number of students 16 72,18 % Percentage of classical absorption capacity 75 % Percentage of classical completion Number of students who completed 12 students Number of students who did not complete 4 students

Tabel 2. Results of Cycle II Action Test Analysis

Based on the data in table 2 above, 1 student got the highest score of 100, 1 student got the lowest score of 35 with an average score of 72.18. The percentage of classical absorption is 72.18% and the percentage of classical learning completion is 75% with the number of students who have completed as many as 12 people and have not completed 4 people. There is an increase in classical learning completion from cycle I to cycle II, which is 4.68%.

Discussion

The results of this classroom action research indicate that integrating instructional video media enriched with elements of the surrounding natural environment significantly enhanced student learning outcomes in the science subject (IPAS),

particularly in the ecosystem topic. This enhancement was evident in the progressive improvement of student achievement, active participation, and teacher performance from Cycle I to Cycle II. The use of video as a technological pedagogical tool created a more engaging and contextually meaningful learning experience, which facilitated students' conceptual understanding of ecological topics such as food chains and food webs. This finding supports previous studies asserting that multimedia resources, when used effectively, can bridge the gap between abstract scientific content and real-world experience (Ariyani et al., 2025; Hernawan et al., 2022).

In Cycle I, several instructional shortcomings were identified. For instance, the teacher failed to explicitly communicate the learning objectives at the beginning of the lesson, which led to a lack of instructional clarity. Furthermore, student engagement was limited, with some students showing signs of distraction and difficulty formulating questions related to the content. These observations align with prior research that emphasizes the importance of clear instructional goals and student-centered learning in improving classroom outcomes (Sajidan et al., 2022; Aristanti & Fatayan, 2024). The relatively low classical completeness rate of 68.75% in this cycle underscores the need for enhanced instructional strategies and planning.

Following critical reflection, improvements were implemented in Cycle II. The teacher articulated the learning objectives clearly and utilized the video media more interactively. Consequently, the classical completeness rate increased to 75%, meeting the minimum standard of mastery. This improvement is consistent with findings by Arlinwibowo et al. (2023) and Hartati et al. (2023), who highlighted the importance of aligning multimedia use with sound pedagogical practices to maximize student learning outcomes.

From a constructivist standpoint, effective learning occurs when students are able to connect new knowledge with their lived experiences. By using video content grounded in the students' local environment, learners were able to visualize ecological relationships and contextualize complex concepts such as interdependence among organisms. This contextualized approach is particularly important at the elementary level, where concrete visual stimuli are essential for bridging theory and real-world applications (Supriyoko et al., 2022; Parmiti et al., 2021). The visual presentation of ecosystems enhanced students' ability to grasp systemic connections, thereby promoting deeper scientific understanding.

Teacher performance also showed marked improvement across the two cycles. In Cycle I, the teacher's performance score reached 85.71%, categorized as good. In Cycle II, this improved significantly to 96.42%, falling into the very good category. This progression illustrates the value of reflective teaching and continuous professional development, especially when educators are empowered with effective teaching tools (Lestari et al., 2021; Fakhriyah et al., 2022). These findings also support the view that teacher efficacy and confidence are instrumental in implementing innovative instructional strategies (Wijayanto et al., 2024; Maggi et al., 2025).

Observational data on student activity further validated the success of the intervention. Student participation increased from 72.91% in Cycle I to 89.58% in Cycle II, reflecting heightened engagement and focus. This improvement resonates with research by Khumraksa and Burachat (2022) and Wulandari et al. (2023), which found that interactive and research-oriented learning environments are instrumental in fostering inquiry-based learning and scientific curiosity.

One key benefit of video media is its capacity to simulate real-world experiences that might otherwise be inaccessible due to logistical or financial constraints. As Naila (2020) and Fitria et al. (2023) point out, visual aids and project-based approaches can enhance collaboration and observational skills by providing students with immersive and authentic learning opportunities. In this study, the integration of local environmental elements into the video content enabled students to "virtually" observe food chains and food webs, leading to increased conceptual retention and engagement.

The findings are further supported by the framework of Problem-Based Learning-Collaboration (PBL-C), which emphasizes cooperative problem-solving in authentic contexts (Sajidan et al., 2022; Abolaji et al., 2025). The interactive video content stimulated inquiry, prompting students to pose questions and engage in collaborative discussions. This pedagogical approach not only enhanced content mastery but also fostered essential 21st-century competencies such as critical thinking and teamwork.

Furthermore, the study illustrates the crucial role of teachers as facilitators who creatively leverage technological tools to design relevant and engaging instruction. Maggi et al. (2025) argue that teacher creativity is essential for delivering content that resonates with students' lived experiences. In this context, the teacher's use of video media that incorporated local environmental settings helped make the learning content more relatable and meaningful, reinforcing place-based education principles (Misbahudholam Ar et al., 2023).

Although conducted in a face-to-face setting, this study also offers insights into broader implications for media-supported learning environments. Sujarwo et al. (2022) suggest that media use can positively impact both student motivation and parental involvement. In this study, the engaging nature of the video content may have encouraged students to extend their learning beyond the classroom by sharing insights and observations with their families—thus creating a ripple effect that supports learning in both school and home environments. Another significant aspect is teacher self-efficacy, which plays a critical role in adopting innovative teaching practices. Wijayanto et al. (2024) emphasize that teachers with high self-efficacy are more likely to implement creative strategies in the classroom. The success observed in this study across both cycles indicates that the teacher's growing confidence contributed to the effective delivery of video-based instruction, reinforcing the idea that professional capacity-building is essential for sustainable innovation in teaching.

In conclusion, this study confirms that the integration of instructional videos supported by local environmental elements is an effective strategy to improve elementary school students' learning outcomes in science, particularly in the topic of ecosystems. The improvements observed in student achievement, engagement, and teacher performance between Cycles I and II demonstrate the transformative potential of combining technology with contextual content. These findings contribute to the expanding literature on multimedia and place-based learning in science education (Ariyani et al., 2025; Rahman et al., 2025). Future research should explore the long-term impacts of such approaches and examine their scalability and adaptability across diverse educational contexts, particularly in resource-limited settings where direct field experiences are not always feasible (Abolaji et al., 2025; Hafina et al., 2022; Surahman et al., 2020).

4. Conclusion

This classroom action research demonstrates that the integration of instructional video media infused with elements of the local natural environment significantly enhances student learning outcomes in science, particularly in the topic of ecosystems. Through two cycles of intervention, improvements were observed not only in student academic achievement but also in levels of engagement and teacher performance. The use of video media allowed students to visualize complex ecological concepts such as food chains and food webs in a concrete and contextually relevant manner, thereby promoting deeper understanding and retention. This approach aligns with constructivist learning principles, which emphasize the importance of connecting new information to students' lived experiences. Moreover, the incorporation of place-based content fostered a sense of relevance and curiosity, making scientific learning more engaging and meaningful for young learners.

Teacher performance and self-efficacy also improved significantly throughout the research cycles, highlighting the importance of reflective teaching and the strategic use of digital tools in the classroom. The study further emphasizes the role of educators as facilitators who can effectively adapt technology to suit the needs and realities of their learners. Overall, the findings of this study suggest that combining multimedia resources with contextual and student-centered pedagogical strategies can lead to substantial improvements in elementary science education. Future research is encouraged to explore the scalability of this approach in varied educational settings and to examine its long-term impact on student learning and motivation.

Acknowledgement

The authors would like to express their deepest gratitude to the lecturers in the elementary school teacher education study program, especially the supervising lecturer for the support given to this research. We also thank the principal and teachers at elementary school 5 Taipalaga for their cooperation and assistance during the data collection process. Special appreciation is given to the 5th grade

students who actively participated in this research. Without their support, this research would not have been possible.

References

- Abolaji, T. J., Owolabi, T., Lameed, S. N., Ogundowole, A., & Mustapha, A. G. (2025). Teaching Conservation of Natural Resources with Culturally Responsive and Context Specific Environment: The Stance of Cultro-Techno-Contextual Approach. Journal of Educational Sciences, 9(1). https://doi.org/10.31258/jes.9.1.p.26-42
- Aristanti, A. P., & Fatayan, A. (2024). The Effect of the UbD-Based Problem Based Learning Model on the Critical Thinking Skills of Grade IV Students in IPAS Subject at Elementary School. Mimbar Sekolah Dasar, 11(2), 268–280. https://doi.org/10.53400/mimbar-sd.v11i2.71794
- Ariyani, F., Fakhriyah, F., & Hilyana, F. S. (2025). Effectiveness of the SAVI Learning Model Assisted by Interactive Video on the Learning Outcomes of Fourth Grade Elementary School Students. Journal of Educational Sciences, 9(2). https://doi.org/10.31258/jes.9.2.p.664-674
- Arlinwibowo, J., Ishartono, N., Linguistika, Y., Purwoko, D., & Suprapto, S. (2023). Gamification in the STEM Domain Subject: The Prospective Method to Strengthen Teaching and Learning. Jurnal Pendidikan IPA Indonesia, 12(4), 564–574. https://doi.org/10.15294/jpii.v12i4.48388
- Fadhluzzakiyy, K. A., Sania, F., Kalsum, U., & Oviyanti, F. (2025). PAI Teacher's Strategy in Building a Classroom Environment That is Friendly to Children with Special Needs. Journal of Educational Sciences, 9(1). https://doi.org/: https://doi.org/10.31258/jes.9.1.p.388-398
- Fakhriyah, F., Masfuah, S., Hilyana, F. S., & Mamat, N. (2022). Analysis of Technological Pedagogical Content Knowledge (TPACK) Ability Based on Science Literacy for Pre-Service Primary School Teachers in Learning Science Concepts. Jurnal Pendidikan IPA Indonesia, 11(3), 399–411. https://doi.org/10.15294/jpii.v11i3.37305
- Fitria, Y., Alwi, N. A., Eliasni, R., Chandra, C., & Kharisma, A. (2023). Graphic Organizer-Based Science Literacy Learning Models In Elementary Schools. Jurnal Pendidikan IPA Indonesia, 12(1), 123–134. https://doi.org/10.15294/jpii.v12i1.41004
- Hafina, A., Nur, L., & Malik, A. A. (2022). The development and validation of a character education model through traditional games based on the Socratic method in an elementary school. Jurnal Cakrawala Pendidikan, 41(2), 404–415. https://doi.org/10.21831/cp.v41i2.46125
- Hartati, F. D., Islami, N., & Rahmad, M. (2023). Needs Analysis of Learning Video Development Using Edpuzzle Based Problem Based Learning to Improve Critical Thinking Skills of High School Students. Journal of Educational Sciences, 7(1), 27. https://doi.org/10.31258/jes.7.1.p.27-34
- Hernawan, A. H., Septiana, A. I., Rachman, I., Darmawan, D., & Kodama, Y. (2022). Environmental Education in Elementary School with Kamiholo: Kamishibai and Hologram as Teaching Multimedia. Jurnal Pendidikan IPA Indonesia, 11(2), 229–236. https://doi.org/10.15294/jpii.v11i2.31918

- Irmayu, A., Caska, C., & Gimin, G. (2024). Use of Animated Video Learning Media to Increase Learning Interest. Journal of Educational Sciences, 8(2), 282. https://doi.org/10.31258/jes.8.2.p.282-293
- Khumraksa, B., & Burachat, P. (2022). The Scientific Questioning and Experimental Skills of Elementary School Students: The Intervention of Research-Based Learning. Jurnal Pendidikan IPA Indonesia, 11(4), 588–599. https://doi.org/10.15294/jpii.v11i4.36807
- Lestari, H., Sopandi, W., Sa'ud, U. S., Musthafa, B., Budimansyah, D., & Sukardi, R. R. (2021). The Impact of Online Mentoring in Implementing RADEC Learning to the Elementary School Teachers' Competence in Training Students' Critical Thinking Skills: A Case Study During COVID-19 Pandemic. Jurnal Pendidikan IPA Indonesia, 10(3), 346–356. https://doi.org/10.15294/jpii.v10i3.28655
- Maggi, D. P. T., Lagandesa, Y. R., Aqil, M., & Fasli, M. (2025). Analysis of Teachers' Creativity in SBDP Learning Class V SDN 24 Palu. Journal of Educational Sciences, 9(3). https://doi.org/10.31258/jes.9.3.p.1334-1341
- Misbahudholam Ar, M., Sama', S., & Aini, K. (2023). The Implementation of Ecoliteracy as a Learning Resource to Improve Environmental Care Attitudes in Elementary Schools. Mimbar Sekolah Dasar, 10(1), 122–134. https://doi.org/10.53400/mimbar-sd.v10i1.51256
- Muhtar, T., & Dallyono, R. (2020). Character Education from the Perspectives of Elementary School Physical Education Teachers. Jurnal Cakrawala Pendidikan, 39(2), 395–408. https://doi.org/10.21831/cp.v39i2.30647
- Naila, I. (2020). The Effectiveness of Science Project Learning based on Entrepreneurship Model to Improve Elementary Students' Collaborative Skills. Mimbar Sekolah Dasar, 7(3), 348–361. https://doi.org/10.17509/mimbar-sd.v7i3.28676
- Parmiti, D. P., Rediani, N. N., Antara, I. G. W. S., & Jayadiningrat, M. G. (2021). The Effectiveness of Local Culture-Integrated Science Learning through Project-Based Assessment on Scientific Attitudes and Science Process Skills of Elementary School Students. Jurnal Pendidikan IPA Indonesia, 10(3), 439–446. https://doi.org/10.15294/jpii.v10i3.31301
- Pramono, H., Nurafiati, S., Rahayu, T., & Sugiharto, S. (2023). The influence of physical education teacher performance on elementary students' character building. Jurnal Cakrawala Pendidikan, 42(1), 220–231. https://doi.org/10.21831/cp.v42i1.53359
- Rahman, N., Wiranata, S., Haifaturrahmah, H., & Liswijaya, L. (2025). Science E-Modules Learning Based on Sasak Local Wisdom to Enhance the Creative Disposition of Elementary School Students. Mimbar Sekolah Dasar, 12(1), 113–131. https://doi.org/10.53400/mimbar-sd.v12i1.81974
- Sajidan, S., Suranto, S., Atmojo, I. R. W., Saputri, D. Y., & Etviana, R. (2022). Problem-Based Learning-Collaboration (PBL-C) Model in Elementary School Science Learning in the Industrial Revolution Era 4.0 and Indonesia Society 5.0. Jurnal Pendidikan IPA Indonesia, 11(3), 477–488. https://doi.org/10.15294/jpii.v11i3.30631
- Sidiq, Y., Ishartono, N., Desstya, A., Prayitno, H. J., Anif, S., & Hidayat, M. L. (2021). Improving Elementary School Students' Critical Thinking Skill in Science through HOTS-based Science Questions: A Quasi-Experimental

- Study. Jurnal Pendidikan IPA Indonesia, 10(3), 378–386. https://doi.org/10.15294/jpii.v10i3.30891
- Sujarwo, S., Kusumawardani, E., & Nurmalasari, Y. (2022). Does the motivation and parents involvement affected by distance learning media during pandemic covid 19? Jurnal Cakrawala Pendidikan, 41(2), 481–493. https://doi.org/10.21831/cp.v41i2.46265
- Supriyoko, S., Nisa, A. F., & Uktolseja, N. F. (2022). The nature-based school curriculum: A solution to learning-teaching that promotes students' freedom. Jurnal Cakrawala Pendidikan, 41(3), 643–652. https://doi.org/10.21831/cp.v41i3.47903
- Surahman, S., Suleman, S. M., & Hatibe, A. (2020). Application of Environmental-Based Scientific Approach to Improve Science Learning Activities and Outcomes in Grade IV Students of SD Inpres Koya, North Morowali Regency. Jurnal Riset Pendidikan MIPA, 3(1), 24–34. https://doi.org/10.22487/j25490192.2019.v3.i1.pp24-34
- Wijayanto, P. W., Supriyadi, T., Satyaninrum, I. R., Judijanto, L., & Lumbantoruan, J. H. (2024). Factors that Influence Teacher Self-Efficacy in Providing Education in the School Environment. Mimbar Sekolah Dasar, 11(1), 21-35. https://doi.org/10.53400/mimbar-sd.v11i1.66176
- Wulandari, A., Sukarno, S., & Matsuri, M. (2023). Implementation of IPAS with an Inquiry Learning Model in Grade 4 Primary School. Mimbar Sekolah Dasar, 10(3), 547–560. https://doi.org/10.53400/mimbar-sd.v10i3.63099

How to cite this article:

Rizal., Surahman., Rosola., & Pahriadi. (2025). Enhancing Student Learning Outcomes in Science Through Environmental-Based Instructional Videos in Grade V at SD Inpres 5 Taipalaga. *Journal of Educational Sciences*, *9*(4), 2562-2572.